- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Massoud, A A (2)
-
Rodrigues, F S (2)
-
Sousasantos, J (2)
-
Abdu, M A (1)
-
Apaza, J M (1)
-
Fejer, B G (1)
-
Kuyeng, K M (1)
-
Milla, M A (1)
-
Padin, C (1)
-
Scipion, D (1)
-
Valladares, C E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 14‐panel Advanced Modular Incoherent Scatter Radar (AMISR‐14) system deployed at Jicamarca observed equatorial spread F plumes on two consecutive nights under unfavorable seasonal and solar flux conditions during a period that can be categorized as geomagnetically quiet. The AMISR‐14 capability of observing in multiple pointing directions allowed the characterization of the irregularity zonal drifts revealing that, in addition to their atypical occurrence, the zonal drifts of these plumes/irregularities also presented distinct patterns from one night to another, reversing from east to west on the second night. This work addresses two main subjects: (a) the mechanisms that may have led to the generation of these irregularities, despite the unfavorable conditions, and (b) the mechanisms that possibly led to the reversal (east‐to‐west) in the zonal plasma drift on the second night. To do so a multi‐instrumented and multi‐location investigation was performed. The results indicate the occurrence of simultaneous spread‐F events over the Peruvian and the Brazilian regions, evidencing a non‐local process favoring the development of the irregularities. The results also suggest that, even under very mild geomagnetic perturbation conditions, the recurring penetration of electric fields in the equatorial ionosphere can occur promptly, modifying the equatorial electrodynamics and providing favorable conditions for the plume development. Moreover, the results confirm that the eastward penetration electric fields, combined with the upsurge of Hall conductivity in the nighttime typically associated with the presence of sporadic‐E layers, are likely to be the mechanism leading to the reversal in the irregularity zonal drifts over these regions.more » « less
-
Rodrigues, F S; Milla, M A; Scipion, D; Apaza, J M; Kuyeng, K M; Sousasantos, J; Massoud, A A; Padin, C (, Earth, Planets and Space)Abstract We describe a mode for two-dimensional UHF (445 MHz) radar observations ofF-region irregularities using the 14-panel version of the advanced modular incoherent scatter radar (AMISR-14). We also present and discuss examples of observations made by this mode. AMISR-14 is installed at the Jicamarca Radio Observatory (JRO, 11.95°S, 76.87°W, ~ 0.5° dip latitude) in Peru and, therefore, allows studies of ionospheric irregularities at the magnetic equator. The new mode takes advantage of the electronic beam-steering capability of the system to scan the equatorialF-region in the east–west direction. Therefore, it produces two-dimensional views of the spatial distribution of sub-meter field-aligned density irregularities in the magnetic equatorial plane. The scans have a temporal resolution of 20 s and allow observations over a zonal distance of approximately 400 km at mainF-region heights. While the system has a lower angular and range resolution than interferometric in-beam VHF radar imaging observations available at Jicamarca, it allows a wider field-of-view than that allowed with the VHF system. Here, we describe the mode, and present and discuss examples of observations made with the system. We also discuss implications of these observations for studies of ESF at the JRO. Graphical abstractmore » « less
An official website of the United States government
